Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors.
نویسندگان
چکیده
Spinophilin (SPL) and neurabin (NRB) are structurally similar scaffolding proteins with several protein binding modules, including actin and PP1 binding motifs and PDZ and coiled-coil domains. SPL also binds regulators of G protein signaling (RGS) proteins and the third intracellular loop (3iL) of G protein-coupled receptors (GPCRs) to reduce the intensity of Ca(2+) signaling by GPCRs. The role of NRB in Ca(2+) signaling is not known. In the present work, we used biochemical and functional assays in model systems and in SPL(-/-) and NRB(-/-) mice to show that SPL and NRB reciprocally regulate Ca(2+) signaling by GPCRs. Thus, SPL and NRB bind all members of the R4 subfamily of RGS proteins tested (RGS1, RGS2, RGS4, RGS16) and GAIP. By contract, SPL, but not NRB, binds the 3iL of the GPCRs alpha(1B)-adrenergic (alpha(1B)AR), dopamine, CCKA, CCKB and the muscarinic M3 receptors. Coexpression of SPL or NRB with the alpha(1B)AR in Xenopus oocytes revealed that SPL reduces, whereas NRB increases, the intensity of Ca(2+) signaling by alpha(1B)AR. Accordingly, deletion of SPL in mice enhanced binding of RGS2 to NRB and Ca(2+) signaling by alphaAR, whereas deletion of NRB enhanced binding of RGS2 to SPL and reduced Ca(2+) signaling by alphaAR. This was due to reciprocal modulation by SPL and NRB of the potency of RGS2 to inhibit Ca(2+) signaling by alphaAR. These findings suggest a novel mechanism of regulation of GPCR-mediated Ca(2+) signaling in which SPL/NRB forms a functional pair of opposing regulators that modulates Ca(2+) signaling intensity by GPCRs by determining the extent of inhibition by the R4 family of RGS proteins.
منابع مشابه
Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase.
The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 a...
متن کاملStructural basis for spinophilin-neurabin receptor interaction.
Neurabin and spinophilin are neuronal scaffolding proteins that play important roles in the regulation of synaptic transmission through their ability to target protein phosphatase 1 (PP1) to dendritic spines where PP1 dephosphorylates and inactivates glutamate receptors. However, thus far, it is still unknown how neurabin and spinophilin themselves are targeted to these membrane receptors. Spin...
متن کاملThe Rho-Specific GEF Lfc Interacts with Neurabin and Spinophilin to Regulate Dendritic Spine Morphology
Neurabin and spinophilin are homologous protein phosphatase 1 and actin binding proteins that regulate dendritic spine function. A yeast two-hybrid analysis using the coiled-coil domain of neurabin revealed an interaction with Lfc, a Rho GEF. Lfc was highly expressed in brain, where it interacted with either neurabin or spinophilin. In neurons, Lfc was largely found in the shaft of dendrites in...
متن کاملAdrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin.
The noradrenergic system in the prefrontal cortex (PFC) is involved in many physiological and psychological processes, including working memory and mood control. To understand the functions of the noradrenergic system, we examined the regulation of NMDA receptors (NMDARs), key players in cognition and emotion, by alpha1- and alpha2-adrenergic receptors (alpha1-ARs, alpha2-ARs) in PFC pyramidal ...
متن کاملDistinct roles for spinophilin and neurabin in dopamine-mediated plasticity.
Protein phosphatase 1 plays a major role in the governance of excitatory synaptic activity, and is subject to control via the neuromodulatory actions of dopamine. Mechanisms involved in regulating protein phosphatase 1 activity include interactions with the structurally related cytoskeletal elements spinophilin and neurabin, synaptic scaffolding proteins that are highly enriched in dendritic sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2007